HORIZON JOIN keyword
HORIZON JOIN is a specialized time-series join designed for markout analysis — a common financial analytics pattern where you need to analyze how prices or metrics evolve at specific time offsets relative to events (e.g., trades, orders).
It is a variant of the JOIN keyword that combines
ASOF JOIN matching with a set of forward (or
backward) time offsets, computing aggregations at each offset in a single pass.
Syntax
RANGE form
Generate offsets at regular intervals from FROM to TO (inclusive) with the
given STEP:
SELECT [<keys>,] <aggregations>
FROM <left_table> AS <left_alias>
HORIZON JOIN <right_table> AS <right_alias> [ON (<join_keys>)]
RANGE FROM <from_expr> TO <to_expr> STEP <step_expr> AS <horizon_alias>
[GROUP BY <keys>]
[ORDER BY ...]
For example, RANGE FROM 0s TO 5m STEP 1m generates offsets at 0s, 1m, 2m,
3m, 4m, 5m.
LIST form
Specify explicit offsets as interval literals:
SELECT [<keys>,] <aggregations>
FROM <left_table> AS <left_alias>
HORIZON JOIN <right_table> AS <right_alias> [ON (<join_keys>)]
LIST (<offset_expr>, ...) AS <horizon_alias>
[GROUP BY <keys>]
[ORDER BY ...]
For example, LIST (0, 1s, 5s, 30s, 1m) generates offsets at those specific
points. Offsets must be monotonically increasing. Unitless 0 is allowed as
shorthand for zero offset.
How it works
For each row in the left-hand table and each offset in the horizon:
- Compute
left_timestamp + offset - Perform an ASOF match against the right-hand table at that computed timestamp
- When join keys are provided (via
ON), only right-hand rows matching the keys are considered
Results are implicitly grouped by the non-aggregate SELECT columns (horizon offset, left-hand table keys, etc.), and aggregate functions are applied across all matched rows.
The horizon pseudo-table
The RANGE or LIST clause defines a virtual table of time offsets, aliased by
the AS clause. This pseudo-table exposes two columns:
| Column | Type | Description |
|---|---|---|
<alias>.offset | LONG | The offset value in the left-hand table's designated timestamp resolution. For example, with microsecond timestamps, h.offset / 1000000 converts to seconds; with nanosecond timestamps, h.offset / 1000000000 converts to seconds or h.offset / 1000000 converts to milliseconds. |
<alias>.timestamp | TIMESTAMP | The computed horizon timestamp (left_timestamp + offset). Available for grouping or expressions. |
Interval units
All offset values in RANGE (FROM, TO, STEP) and LIST must include a
unit suffix. Bare numbers are not valid — write 5s, not 5 or 5000000000.
The only exception is 0, which is allowed without a unit as shorthand for zero
offset.
Both RANGE and LIST use the same interval expression syntax as
SAMPLE BY:
| Unit | Meaning |
|---|---|
n | Nanoseconds |
U | Microseconds |
T | Milliseconds |
s | Seconds |
m | Minutes |
h | Hours |
d | Days |
w | Weeks |
Note that h.offset is always returned as a LONG in the left-hand table's
timestamp resolution (e.g., nanoseconds for TIMESTAMP_NS tables), regardless
of the unit used in the RANGE or LIST definition. When matching offset
values in a PIVOT ... FOR offset IN (...) clause, use the raw numeric value
(e.g., 1800000000000 for 30 minutes in nanoseconds), not the interval literal.
Examples
The examples below use the demo dataset tables
fx_trades (trade executions) and market_data (order book snapshots with 2D
arrays for bids/asks).
Post-trade markout at uniform horizons
Measure the average mid-price at 1-second intervals after each trade — a classic way to evaluate execution quality and price impact:
SELECT
h.offset / 1000000000 AS horizon_sec,
t.symbol,
avg((m.best_bid + m.best_ask) / 2) AS avg_mid
FROM fx_trades AS t
HORIZON JOIN market_data AS m ON (symbol)
RANGE FROM 1s TO 60s STEP 1s AS h
ORDER BY t.symbol, horizon_sec;
Since fx_trades uses nanosecond timestamps (TIMESTAMP_NS), h.offset is in
nanoseconds. Dividing by 1,000,000,000 converts to seconds.
Markout P&L at non-uniform horizons
Compute the average post-trade markout at specific horizons using LIST:
SELECT
h.offset / 1000000000 AS horizon_sec,
t.symbol,
avg((m.best_bid + m.best_ask) / 2 - t.price) AS avg_markout
FROM fx_trades AS t
HORIZON JOIN market_data AS m ON (symbol)
LIST (1s, 5s, 30s, 1m) AS h
ORDER BY t.symbol, horizon_sec;
Pre- and post-trade price movement
Use negative offsets to see price levels before and after trades — useful for detecting information leakage or adverse selection:
SELECT
h.offset / 1000000000 AS horizon_sec,
t.symbol,
avg((m.best_bid + m.best_ask) / 2) AS avg_mid,
count() AS sample_size
FROM fx_trades AS t
HORIZON JOIN market_data AS m ON (symbol)
RANGE FROM -5s TO 5s STEP 1s AS h
ORDER BY t.symbol, horizon_sec;
Volume-weighted markout
Compute an overall volume-weighted markout without grouping by symbol:
SELECT
h.offset / 1000000000 AS horizon_sec,
sum(((m.best_bid + m.best_ask) / 2 - t.price) * t.quantity)
/ sum(t.quantity) AS vwap_markout
FROM fx_trades AS t
HORIZON JOIN market_data AS m ON (symbol)
RANGE FROM 1s TO 60s STEP 1s AS h
ORDER BY horizon_sec;
Mixed-precision timestamps
The left-hand and right-hand tables can use different timestamp resolutions
(e.g., TIMESTAMP with microseconds and TIMESTAMP_NS with nanoseconds).
QuestDB aligns the timestamps internally — no explicit casting is needed.
When the tables differ in resolution, h.offset uses the resolution of the
left-hand table (the event table).
Current limitations
- No other joins: HORIZON JOIN cannot be combined with other joins in the same level of the query. Joins can be done in an outer query.
- No right-hand side filter:
WHEREclause filters apply to the left-hand table only; right-hand table filters are not yet supported. - Both tables must have a designated timestamp: The left-hand and right-hand tables must each have a designated timestamp column.
- RANGE constraints:
STEPmust be positive;FROMmust be less than or equal toTO. - LIST constraints: Offsets must be interval literals (e.g.,
1s,-2m,0) and monotonically increasing.